Two-sided Green function estimates for killed subordinate Brownian motions

نویسندگان

  • Panki Kim
  • Renming Song
  • Zoran Vondraček
چکیده

A subordinate Brownian motion is a Lévy process that can be obtained by replacing the time of the Brownian motion by an independent subordinator. The infinitesimal generator of a subordinate Brownian motion is −φ(−Δ), where φ is the Laplace exponent of the subordinator. In this paper, we consider a large class of subordinate Brownian motions without diffusion component and with φ comparable to a regularly varying function at infinity. This class of processes includes symmetric stable processes, relativistic stable processes, sums of independent symmetric stable processes, sums of independent relativistic stable processes and much more. We give sharp two-sided estimates on the Green functions of these subordinate Brownian motions in any bounded κ-fat open set D. When D is a bounded C open set, we establish an explicit form of the estimates in terms of the distance to the boundary. As a consequence of such sharp Green function estimates, we obtain a boundary Harnack principle in C open sets with explicit rate of decay.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dirichlet Heat Kernel Estimates for Subordinate Brownian Motions with Gaussian Components

In this paper, we derive explicit sharp two-sided estimates for the Dirichlet heat kernels, in C open sets D in R, of a large class of subordinate Brownian motions with Gaussian components. When D is bounded, our sharp two-sided Dirichlet heat kernel estimates hold for all t > 0. Integrating the heat kernel estimates with respect to the time variable t, we obtain sharp two-sided estimates for t...

متن کامل

Potential theory of subordinate Brownian motions with Gaussian components

In this paper we study a subordinate Brownian motion with a Gaussian component and a rather general discontinuous part. The assumption on the subordinator is that its Laplace exponent is a complete Bernstein function with a Lévy density satisfying a certain growth condition near zero. The main result is a boundary Harnack principle with explicit boundary decay rate for non-negative harmonic fun...

متن کامل

Sharp Bounds for Green Functions and Jump- Ing Functions of Subordinate Killed Brow- Nian Motions in Bounded C Domains

In this paper we obtain sharp bounds for the Green function and jumping function of a subordinate killed Brownian motion in a bounded C domain, where the subordinating process is a subordinator whose Laplace exponent has certain asymptotic behavior at infinity.

متن کامل

bounds on the density , Green function and jumping function of subordinate killed BM

Abstract. Subordination of a killed Brownian motion in a domain D ⊂ R via an α/2-stable subordinator gives rise to a process Zt whose infinitesimal generator is −(− |D), the fractional power of the negative Dirichlet Laplacian. In this paper we establish upper and lower estimates for the density, Green function and jumping function of Zt when D is either a bounded C1,1 domain or an exterior C1,...

متن کامل

Global uniform boundary Harnack principle with explicit decay rate and its application

In this paper, we consider a large class of subordinate Brownian motions X via subordinators with Laplace exponents which are complete Bernstein functions satisfying some mild scaling conditions at zero and at infinity. We first discuss how such conditions govern the behavior of the subordinator and the corresponding subordinate Brownian motion for both large and small time and space. Then we e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010